
1. Introduction
Focused reactive flow and dissolution in fractured or porous media leads to the emergence of highly con-
ductive dissolution conduits, so-called “wormholes” (Daccord et al., 1993; Hoefner & Fogler, 1988). Disso-
lution conduits are prevalent in subsurface karst, and can form extended speleological systems (Dreybrodt 
et al., 2005; Palmer, 1991). Wormholes are also important in several other applications, including CO2 geo-se-
questration (Deng et al., 2016), risk assessment of groundwater contamination (Fryar & Schwartz, 1998) or 
stimulation of petroleum reservoirs (Panga et al., 2005).

The underlying mechanism involves positive feedback between reaction and transport—the pathways that 
focus the reactive flow dissolve preferentially, increasing their conductivity, and in turn focusing more flow. 
Concurrently, shorter wormholes are progressively drained and screened off by the longer wormholes, 
and ultimately cease to grow, resulting eventually in the appearance of hierarchical, scale-invariant dis-
tribution of wormhole lengths (Szymczak & Ladd, 2006). Similar competitive dynamics and emergence of 

Abstract The formation of dissolution conduits by focused reactive flow (i.e., wormholing) in 
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Plain Language Summary The flow of corrosive fluids in an aquifer (e.g., acidic water 
in limestone) can become focused in conductive pathways leading to the formation of pronounced 
dissolution conduits—wormholes. Wormholes can form across a large range of scales, from microns to 
the extended systems of karst conduits. Wormholing patterns evolve by competitive dynamics: Longer 
wormholes drain more flow and hence grow faster, increasing their conductivity, in turn focusing even 
more flow. In the meantime, shorter wormholes become devoid of reactant and stop growing. This results 
in a hierarchical distribution of wormhole lengths, with many small and only a few long ones. Here, using 
a numerical model, we study wormholing in anisotropic media characterized by different permeabilities 
along different directions—a common feature of geological media. We find that anisotropy markedly 
affects wormhole dynamics and the evolution of overall medium permeability. Particularly, anisotropy 
affects wormhole competition and thus their number, shapes, and branching. Wormholing is further 
compared to other pattern-forming processes in nature, and similarities and differences are analyzed. 
These findings contribute to the understanding of wormholing, with implications to subsurface flow-
related processes such as karst and contaminant migration. The results demonstrate how micro-scale 
features controls the large-scale morphology.
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hierarchical structures are observed in various other unstable growth processes in nature, with examples 
ranging from viscous fingering (Roy et al., 1999) to crack propagation in brittle solids (Huang et al., 1997) 
and side-branches growth in crystallization (Couder et al., 1990).

The importance of wormholing and its intriguing physics motivated intensive research, in particular on the 
emergence of reactive-infiltration instabilities (Aharonov et al., 1995; Chadam et al., 1986), their formation 
and competitive dynamics (Budek & Szymczak, 2012; Szymczak & Ladd, 2006), and the effects of medium 
heterogeneity (Hanna & Rajaram, 1998; Upadhyay et al., 2015).

However, the effect of pore-scale anisotropy on the dissolution patterns has received only minor attention 
(e.g., Lai et al., 2016; Schwalbert et al., 2017), despite its prevalence in rocks (Clavaud et al., 2008, and ref-
erences therein), often induced by in-situ differential stress (Bruno, 1994; Kang et al., 2019). Additionally, 
anisotropic void-space is characteristic of fractured media at scales ranging from a single fracture to the 
field-scale (Bonnet et al., 2001; Sahimi, 2011), and often is very pronounced (Barton, 2006). Furthermore, 
previous studies of similar unstable growth processes have shown that anisotropy can have a substantial ef-
fect on the dynamics and pattern formation (Ben-Jacob et al., 1985; Budek et al., 2015; Couder et al., 1990).

In this study, we investigate the effects of pore-scale anisotropy on wormholing dynamics and permeability 
evolution using a pore network model. We find that anisotropy strongly affects wormhole competition, 
their characteristic spacing, and shapes. Additionally, we highlight similarities and differences with viscous 
fingering in an anisotropic network of channels (Budek et al., 2015). The findings emphasize how pore-
scale phenomena and microscopic characteristics of the medium can govern the formation of large-scale 
morphologies.

2. The Pore Network Model
To gain fundamental understanding of the effect of anisotropy on wormholing, we use a 2-D numerical 
pore network model (PNM). PNMs are frequently used to represent dissolution in anisotropic porous (e.g., 
Algive et al., 2010; Hoefner & Fogler, 1988; Nogues et al., 2013; Raoof et al., 2012) and fractured media (e.g., 
Dreybrodt et al., 2005; Perne et al., 2014). Despite their simplicity, PNMs capture the major characteris-
tics of wormholing observed experimentally, including their structure and advancement rate, permeability 
evolution and the non-monotonic relationship between injection rate and fluid volume required for break-
through (e.g., Budek & Szymczak, 2012; Fredd & Fogler, 1998; Wang et al., 2016).

In our model, the pore space is represented as connected cylindrical channels (of initially heterogeneous 
sizes) that are broadened by the dissolution (following e.g., Budek & Szymczak, 2012; Fredd & Fogler, 1998; 
Hoefner & Fogler, 1988; Wang et al., 2016). The nodes of the network (“pore junctions”) are assumed to be 
volumeless such that all the reaction takes place in the channels (“pores”) only (Figure S1 in the Supporting 
Information (SI)). This representation also resembles the 2-D network of conduits formed at the intersec-
tion of bedding plane with a subvertical fracture network, where karst systems evolution initiates (so-called 
“inception horizon”; Dreybrodt, 1988; Filipponi et al., 2009; Frumkin et al., 2017).

The conservation equations for the fluid and solute are written for individual pores and nodes. These sys-
tems of equations provide the fluid fluxes, solute concentrations and mass of solid dissolved. Solute trans-
port in the pores is assumed here to be dominated by advection in the axial direction (flow direction), 
whereas axial diffusion is neglected. This restricts the analysis to conditions where the pore-scale Péclet 
number, Pe = v̅l/D, is sufficiently large, Pe >> 1, common in natural processes and engineering applications 
(Ford & Williams, 2013; Niemi et al., 2017). Here l is the pore length, v̅ is the average fluid velocity and D is 
the diffusion coefficient. At pore surfaces, first-order dissolution reaction is considered. Such assumption 
is often applied to describe dissolution of limestone by acidic solutions (at pH ∼ 3; Peng et al., 2015) and 
under natural conditions (karst, with pH ∼ 6; Dreybrodt et al., 2005; Palmer, 1991), or of halite (Alkattan 
et al., 1997) and gypsum (Colombani, 2008) by water.

The separation of time-scales between fluid flow, solute transport, and dissolution allows us to use the qua-
si-static approach, treating the flow and concentration fields as stationary at each timestep. Then, following 
the dissolution in each timestep the geometrical properties are updated (see e.g., Bekri et al., 1995; Detwiler 
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& Rajaram, 2007; Lichtner, 1991). Below, the PNM and main equation are succinctly described; for detailed 
description see S1 in the SI and previous works (Budek & Szymczak, 2012; Roded et al., 2020).

2.1. Fluid Flow

For an incompressible fluid, steady-state fluid mass conservation at each node i yields

  0,ij
j

q (1)

where qij is the volumetric flow rate through pore ij (qij > 0 indicates flow from node i to j), and the sum-
mation is over all neighboring nodes j. These flow rates are calculated using the Hagen-Poiseuille equation

q
r

l
pij

ij
ij




4

8
 , (2)

where rij is the channel radius, μ is the fluid viscosity and Δpij = pi−pj is the pressure drop between nodes, 
which are a distance l apart (l is constant throughout the network). The system of linear Equations 1 and 2 
is solved for the pressures at the nodes.

2.2. Reactive Transport and Dissolution

Dissolution is modeled assuming: (a) First-order reaction kinetics, (b) solute transport controlled by advec-
tion in the axial direction, and (c) by diffusion in the radial direction (from the bulk fluid to the mineral 
surface). With these assumptions, a 1-D solute conservation equation in each pore can be written in terms 
of the flow-weighted average concentration, c,

 

 2 ,effdcq r c

d (3)

where ξ is the axial coordinate, and λeff is the effective reaction rate coefficient [L/T]. Using the known 
concentration of the pore inlet cin = c(ξ = 0), Equation 3 can be solved for the concentration profile along 
the pore
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Substituting ξ = l for the pore outlet, we note that the exponential decay of the concentration within the 
pore is controlled by

  
, ,effs

f r q
q

 (5)

where s = 2πrl is the pore surface area. The effective reaction rate coefficient, λeff = λ/(1 + g(r)), incorporates 
the effect of transport on reaction, where λ is the surface reaction rate coefficient and the slowdown func-
tion g(r) accounts for the extent by which dissolution rate within a single pore is hindered by the transport,

  


2 .rg r
DSh

 (6)

Here Sh is the Sherwood number, approximated by a constant value of Sh = 4 (Budek & Szymczak, 2012). 
The concentration at the nodes is then calculated using Equation 4 for each pore outlet, assuming complete 
mixing (Kang et al., 2019; Varloteaux et al., 2013). As noted previously (Kang et al., 2015), the assumption 
of complete mixing in junctions may affect reactant dispersion, which, in turn, can influence the dissolution 
patterns. A detailed investigation of this effect is beyond the scope of the present paper and is deferred for 
future research.
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Conservation of solid mass together with the assumption that the pores are broadening uniformly along 
their length, provides the following expression for the change in radius during a timestep t
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where c0 is the concentration at the system’s inlet, r0 is the initial average radius, and t̂  is the dimensionless 
time

 


0
.ˆ tt

r (8)

Here γ = c0/csolθ is the acid capacity number, defined as the ratio between the number of molecules in a unit 
volume of mineral to the number of molecules of reactant in a unit volume of the incoming fluid, with θ 
accounting for the reaction stoichiometry. To account for a finite amount of soluble solid, once locally solid 
is fully dissolved between adjacent pores, these pores are merged (see Roded et al., 2018).

2.3. Dimensionless Groups

The dissolution rate of the pores is a function of f and g, with dependence on time arising through the radi-
us, r, and flow rate, q. To characterize transport and reaction conditions, we use initial averaged values of f 
and g functions for the longitudinal pores, aligned in the main flow direction, x. This leads to the following 
definition of the dimensionless Damkӧhler number:

 




0 ,

1
sDa

q G (9)

and the dimensionless transport parameter


 02 ,rG

DSh
 (10)

where s0 and q̅ are the average surface area and inlet flow rate in longitudinal pores. Note that the Péclet 
number does not appear in these equations as diffusion effects in the axial direction are neglected (Pe >> 1).

2.4. Simulation Setup

2.4.1. Initial and Boundary Conditions

We consider flow of fixed total volumetric rate, Q, and reactant concentration, c0, from the inlet to the outlet 
face. At the side walls, periodic boundary conditions for flow and transport are set. Concentration at the 
outlet nodes is calculated from solute mass conservation (Equation 4; free-flow boundary).

2.4.2. Network and Reactive Transport Conditions

We use a regular rectangular network and consider heterogeneity in pore volumes by drawing values from 
a lognormal distribution with relative standard deviation of 0.7, representative of the large characteristic 
variability in pore sizes of geological media (Sahimi, 2011). Anisotropy in the network is implemented by 
changing the average size of transverse pores, keeping the average size of the longitudinal pores constant in 
the different simulations. The anisotropy degree is defined as

 ,y

x

a
S

a (11)
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where a is the average pore cross-sectional area, with subscript x and y denoting longitudinal and transverse 
pores. We use here S values of 0.1–10, to reflect the fact that anisotropy can be very pronounced (e.g., in the 
case of unidirectional tensile joints; Adler et al., 2013).

The network has 200 nodes in the x-direction, whereas the number of nodes in the orthogonal direction, y, 
depends on S. To allow uninhibited pattern formation, the computational domain must be sufficiently wide; 
this width, defined by the distance between longest wormholes, depends on S, and thus we vary the aspect 
ratio when simulating different values of S (Section 3, Figure 1).

In this study, we focus on the wormholing regime prevailing when the reaction rate is relatively fast, and 
thus consider values of Da = 1 and G = 10. To obtain statistically representative results for the heterogene-
ous media, results were averaged over 150 realizations.

3. Results and Discussion
The detailed microstructure of the porous medium can affect the manner in which reactive fluid is dis-
tributed within the void space and thus modify the dissolution patterns (Deng et al., 2018). Here, we show 
that anisotropy substantially changes the characteristic spacing between the wormholes (Figure 1a), and 
consequently the fluid volume required to attain a given permeability enhancement (Figure 1b). For narrow 
transverse pores (low S), the spacing between the wormholes is small and the reactant is spent on extend-
ing multiple wormholes. Conversely, for wide transverse pores (large S) dissolution is focused in a small 
number of competing wormholes, with more rapid permeability enhancement. Increasing S from 0.1 to 10, 
increases by a factor of four the volume of reactive fluid, Vf, required to attain a 10-fold increase in permea-
bility (k/k0 = 10, where k0 is the initial value), cf., Figure 1b.

The underlying mechanism of wormhole growth involves competition between the wormholes for the 
available flow. Longer and more conductive wormholes progressively focus more flow at the expense of 
shorter ones. In return, an increased pressure ahead of the longer wormholes screens off the shorter ones, 
which ultimately cease to grow. This process perpetuates, leading to pattern coarsening: the separation be-
tween active (growing) wormholes increases while their number decreases (Figure 1c).
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Figure 1. (a) Dissolution patterns in grayscale (white depicts fully dissolved areas) for different anisotropy degrees, S, 
and (b) the evolution of permeability k (normalized by its initial value, k0) with injected fluid volume, Vf (scaled by the 
sample volume). (c) Schematics of the evolution of hierarchical growth pattern. Over time (advancing from I to IV), the 
number of active wormholes (orange) decreases, while the spacing between them increases. The dashed frame (IV) is 
the hierarchical cell, with an aspect ratio ˆ

sL  = Ls/Lx, and Ncell(Lw) is the number of wormholes in the cell longer than Lw; 
here Ncell(Lw = 1/4Lx) = 4. The patterns in (a) are shown for domains with Ly/Lx >  ˆ

sL .
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This competitive dynamics results in the appearance of hierarchical, scale-invariant distribution of worm-
hole lengths, obeying a power-law

   ,w wn L L (12)

where n(Lw) is the linear wormhole density, n(Lw) = N(Lw)/Ly, with N(Lw) being the total number of worm-
holes longer than Lw, normalized by injection face length, Ly, and α ≈ 1 (Szymczak & Ladd, 2006; Upadhyay 
et al., 2015). The exponent α ≈ 1 agrees with theoretical results on the scaling of dendrite growth driven by 
a Laplacian field (Krug et al., 1993). Here, we observe that while for S > 1 the length distribution indeed 
follows a power-law with α ≈ 1, for S < 1 the distribution ceases to be scale-free (Figure 2a). The different 
domain aspect ratios (Figure 1a) are chosen to be wider than the distance between the longest group of 
wormholes which has not yet screened each other, i.e., wide enough to accommodate at least one cell, 
which in turn depends on S (Figure 1c).

Interestingly, these findings are consistent with recent experimental results of viscous fingering of two 
immiscible fluids in an anisotropic network of microfluidic channels (Budek et al.,  2015). The setup in 
Budek et al.  (2015) can be described as a collection of zero-resistance dendrites (displacing fluid fingers 
of negligible viscosity) that interact through the Laplacian pressure field, with their growth proportional 
to the gradient ahead of their tips. An analogy between viscous fingering and wormholing can be made by 
replacing the continuous porosity field by a sharp transition: the wormholes approximated as fully dissolved 
and the matrix assumed completely undissolved. This analogy assumes that: (a) the pressure field in the 
undissolved rock satisfies the Laplace equation; (b) the hydraulic resistance of the wormholes is negligible 
in comparison to the matrix; and (c) wormhole growth speeds are proportional to the pressure gradient 
ahead of their tips (Cabeza et al., 2020).

The increase of the spacing between the wormholes and their lower density, n(Lw), observed for wider and 
more conductive transverse pores (S > 1), is explained by enhanced interaction among the wormholes via 
the pressure field, increasing wormhole competition. However, when S is small, the interaction and selec-
tion are weaker, resulting in smaller separation distance and larger n(Lw) (Figure 2a).
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Figure 2. (a) The linear density of wormholes longer than Lw, n(Lw). Wormhole distribution for anisotropy degree 
S ≳ 1, obeys a power-law with α ≈ 1 (Equation 12; fitted dashed black line). (b) Characteristic wormhole spacing, ˆ

sL  
(orange squares), showing a fit to the power-law ˆ

sL ∼ Sβ with β = 0.62 (dashed blue line). The black line shows the 
dependence ˆ

sL ∼S, which holds for Laplacian growth (e.g., viscous fingering). Wormholes shorter than 0.05Lx and 
longer than 0.5Lx were not taken into account in the distribution, the former because their length is influenced by 
the lattice discretization effects, and the latter because the selection process among the longest ones has not yet been 
concluded.
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A longer wormhole of length Lw will screen neighboring shorter ones over a typical distance, Ls (Figure 1c). 
This distance can be obtained by dividing the width of the system, Ly, by the number of hierarchical cells 
in the system, ε,


 ,y

s
L

L (13)

where ε is calculated using

 
  

/
.

/
w x

cell w x

N L L
N L L

 (14)

Here N(Lw/Lx) and Ncell(Lw/Lx) are the number of wormholes that are longer than Lw at breakthrough, in the 
entire system and in the hierarchical cell, respectively. The latter is determined using Equation 12 as Ncell 

(Lw/Lx) = (Lw/Lx)−1 (Figure 1c). Here, breakthrough is defined as the moment when the longest wormhole 
reaches the outlet. Ls can be scaled to provide the hierarchical cell aspect ratio, ˆ

sL  = Ls/Lx. Thus, the com-
plete hierarchical distribution of the wormhole lengths can only be observed if the system is wide enough, 
Ly/Lx ≥  ˆ

sL .

In the case of viscous fingering on a rectangular network, both the numerical results and scaling analysis 
of the anisotropic Laplace equation suggest that the characteristic spacing scales linearly with S, ˆ

sL ∼S, as 
long as S ≳ 1 (black line in Figure 2b; Budek et al., 2015). However, for wormholing, ˆ

sL  increases with S 
nonlinearly, obeying ˆ

sL  ∼ S β with β ≈ 0.62. This difference between the systems demonstrates that worm-
holing deviates from the simplified description of the model for dendrite growth in the Laplacian field and 
is a more intricate phenomenon. We attribute the power-law scaling to the effect of anisotropy on wormhole 
shape and their advancement velocity. The precise nature of this relationship remains the subject of future 
investigation. For S < 1, since the distribution is no longer hierarchical (see Figure 2a) the scaling relation 
is no longer valid.

By affecting wormhole spacing, the anisotropy also controls the flow rate drained through the individ-
ual wormholes, which in turn profoundly affects the wormhole shape (Fredd & Fogler,  1998; Golfier 
et al., 2002). To characterize the latter, we measure the wormhole aspect ratio, Awh = Lw/ρ, defined as the 
ratio between wormhole length and its average width, ρ, calculated from the fully dissolved area (Figures 3a 
and 3b). We find that Awh is inversely proportional to S. This can be rationalized by noting that as S decreas-
es, the wormhole spacing and fluid velocity in individual wormholes decrease. This, in turn, leads to longer 
fluid residence times, substantial reactant concentration decay along the flow path (Figure 3b.1), and an 
enhanced role of the mass transfer to the wormhole walls (Steefel & Lasaga, 1990; Szymczak & Ladd, 2009). 
As a result, the dissolution rate is largest near the inlet and decreases downstream, such that wormholes 
develop an elongated conical shape with relatively high Awh (Figures 3a and 3b.1).

Conversely, for large S and fast flow, reactivity at the tip remains high and wormholes attain a more linear 
shape (so-called “dominant wormholes,” Fredd & Fogler (1998)) (Figure 3b.2). In fact, the wormholes tend 
to widen downstream: as dissolution progresses, the spacing between the active wormholes increases and 
they focus increasingly more flow. In turn, the flow spreads sideways from the wormhole tip through the 
highly conductive transverse pores, leading to widening downstream. Analogous widening was also ob-
served in viscous fingering and solidification (Budek et al., 2015; Couder et al., 1990), apparently induced 
by similar dynamics.

The effect of anisotropy on wormhole shape has also important implications for permeability evolution and 
the fluid volume to breakthrough curve. The latter is important in oil wells stimulation, in which one looks 
for an optimum injection rate allowing to attain breakthrough with a minimum reactant usage (Fredd & 
Fogler, 1998; Xu et al., 2020). This is usually associated with the formation of dominant wormholes because 
they progress faster than conical ones. Since for larger S dominant wormholes appear at lower flow rates 
(higher Da), a corresponding shift takes place in the optimum injection rate (Figure 3c).

Lastly, we focus on low S conditions, where wormholes tend to develop pronounced side branches that 
strongly compete with the main wormhole and occasionally even divert the bulk flow (Figures 1a and 4a.1). 
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To investigate the development of side branches, we use a simple model system with a central permeable 
pre-existing channel extending from the inlet to 1/4Lx, with the rest of the pores of almost uniform sizes 
(relative standard deviation of 0.03). We observe that while in the isotropic system (S = 1) hardly any side 
branches develop, for S = 0.1 branching becomes extensive (cf., Figure 4b.2 and 4b.4).

Inspecting the pressure field at t  =  0 reveals that for S  =  0.1 the pressure perturbation induced by the 
preexisting channel decays sharply in the transverse direction (Figure 4b.1, see inset), because of the high 
resistivity of the transverse pores. Conversely, the pressure decay is much more gradual for isotropic media 
(Figure 4b.3). These observations reveal that the short screening range at S = 0.1, and the pressure gradient 
that is almost perpendicular to the channel, promote transverse flow and branch development. The branch-
es efficiently drain fluid to the outlet, and their extension continue due to the short transverse screening 
length and the relatively high transverse pressure gradient. As the process continues, new branches develop 
downstream from the main wormhole body. Consequently, upstream branches become gradually screened-
off and are eventually abandoned. Similar branching was observed at low S conditions in viscous fingering 
on a lattice and in solidification (Budek et al., 2015; Couder et al., 1990).

For very narrow traverse pores (S = 0.01), the weak competition results in wormhole merging and relative-
ly compact and planar dissolution front. Compact front is commonly a characteristic of low Péclet diffu-
sion-dominated conditions (Golfier et al., 2002, Figure 4a.2). Here, however, we show that at high Péclet, 
low S conditions can preclude wormholing, which would otherwise develop if the medium was isotropic.
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Figure 3. (a) Aspect ratio of the individual wormholes (circles), Awh, defined as wormhole length, Lw over its average width (measured at breakthrough). 
Lines denote second-order polynomial fits. (b) Magnification of single wormholes (grayscale, white depicts fully dissolved regions) and the corresponding 
reactant concentration field, c. For low S (S = 0.5, b.1), reactant concentration decays within the wormhole, resulting in an elongated conical shape and high 
Awh. Conversely, for S = 10 (b.2), the flow rate in the wormholes is higher and wormholes become more linear. (c) Volume to breakthrough, VBT, versus Da. 
Changing anisotropy shifts the optimum injection rate (guidelines connect the simulation results); in (c) a hundred realizations were carried out on smaller 
networks (100 nodes in the x-direction).
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4. Summary
Simulations using a pore network model reveal that the degree of anisotropy S (ratio of transverse to lon-
gitudinal pore-sizes) markedly affects wormholing and permeability evolution. In particular, anisotropy 
alters the wormhole competition and their characteristic spacings and shapes. It also leads to a shift in 
the optimum injection rate, which is important for practical applications. These findings are comparable 
with those reported for other unstable growth processes, such as viscous fingering. However, we also find 
important difference: While in viscous fingering for S ≳ 1 the spacing between the fingers scales linearly 
with anisotropy degree S, it does not in wormholing. This could be attributed to the effect of anisotropy on 
wormhole shape and the link between the latter and the wormhole advancement velocity. The elucidation 
of these intriguing mechanisms remains the subject of future investigation.

Finally, we note that the anisotropy model adopted here, with different pore diameters in orthogonal direc-
tions, represents one of many possible ways of introducing anisotropy in rocks. To test the generality of our 
results, we have also analyzed the dissolution patterns in a single fracture, with anisotropy introduced by 
controlling the spatial correlation length of the aperture in two orthogonal directions. The results presented 
in SI (S2) show a remarkable agreement with the pore network model, demonstrating that our main con-
clusions do not depend on the details of pore-scale anisotropy model.
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Figure 4. (a) Dissolution patterns at low S (wider longitudinal pores); fully dissolved areas marked in white. For S = 0.1 pronounced branches develop (a.1), 
whereas for lower S, wormholes tend to merge (a.2). (b) Branching development is studied using a system with a seeded central channel (white segments in b.1 
and b.3). At t = 0 for S = 0.1, the pressure perturbation induced by the channel decays sharply, leading to large transverse gradients and short screening range, 
which promote branching. Conversely, for S = 1 extensive screening occurs ahead of the wormhole tip (cf., magnification in b.1 and b.2).
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Data Availability Statement
Data in this study are available in (https://doi.org/10.5281/zenodo.3980615).
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