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Direct numerical simulations are used to elucidate the interplay of wettability and fluid
viscosities on immiscible fluid displacements in a heterogeneous porous medium. We
classify the flow regimes using qualitative and quantitative analysis into viscous fingering
(low M, M being the viscosity ratio—described as ratio of fluid viscosity of injected by
defending phases), compact displacement (high M), and an intermediate transition regime
(M ≈ 1). We use stability analysis to obtain theoretical phase boundaries between these
regimes, which agree well with our analyses. At the macroscopic (sample) scale, we find
that wettability strongly controls the threshold M (at which the regimes change). At the
pore scale, wettability alters the dominant pore-filling mechanism. At very small M (vis-
cous fingering regime), smaller pore spaces are preferentially invaded during imbibition,
with flow of films of invading fluid along the pore walls. In contrast, during drainage, bursts
result in filling of pores irrespective of their size. As M increases, the effect of wettability
decreases as cooperative filling becomes the dominant mechanism regardless of wettability.
This suggest that for imbibition at a given contact angle, decreasing M is associated with
change in effective wetting from neutral-wet (cooperative filling) to strong-wet (film flow).

DOI: 10.1103/PhysRevFluids.8.094002

I. INTRODUCTION

Fundamental understanding of immiscible fluid-fluid displacements in porous media is vital for
the safe and efficient operation of a large number of engineering applications. Examples include
sequestration of carbon dioxide [1,2], the fate of nonaqueous phase liquid contaminants (NAPLs) in
groundwater [3,4] and their remediation [5], geothermal energy [6,7], and extraction of hydrocar-
bons [8,9]. The displacement patterns are controlled by the interplay of capillary, viscous, inertial
and gravitational forces, which in turn are controlled by a wide range of parameters, including flow
rates, fluid properties (viscosity, density, surface tension), wettability, and medium properties (pore
sizes, shapes, and connectivity) [10].

The classical phase diagram of fluid displacement regimes predicts the transition between
compact displacements, viscous fingering, and capillary fingering patterns considering the capillary
number Ca (ratio of viscous to capillary forces) and viscosity ratio M [11,12]. These seminal works

*harris.rabbani@qatar.tamu.edu

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0
International license. Further distribution of this work must maintain attribution to the author(s) and the
published article’s title, journal citation, and DOI.

2469-990X/2023/8(9)/094002(15) 094002-1 Published by the American Physical Society

https://orcid.org/0000-0003-0826-6826
https://orcid.org/0000-0002-2208-4642
https://orcid.org/0000-0003-1130-1864
https://orcid.org/0000-0003-4134-1111
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.094002&domain=pdf&date_stamp=2023-09-06
https://doi.org/10.1103/PhysRevFluids.8.094002
https://creativecommons.org/licenses/by/4.0/


SAIDEEP PAVULURI et al.

did not consider however the effect of wettability—the affinity of one fluid relative to another to
adhere to the solid surface, measured via the contact angle θ . References [11,12] considered only
the extreme cases of drainage and imibibition, that is the displacement of a perfectly nonwetting and
wetting fluid, respectively. Recent works however expose the crucial impact of wettability, showing
it substantially affects the pore filling mechanisms and thus the displacement patterns [13–20].
Furthermore, Ref. [17] has shown that the displacement of immiscible fluids depend on the effective
wettability rather than on the surface wettability. In addition to the microscopic description of the
contact angle, the orientation of the pore spaces dictates the effective wettability of the system.

While the combined impact of Ca and θ on the fluid displacement patterns has been extensively
researched, there exist limited studies that focused on the impact of M and θ on deciphering
multiphase flows through porous media. Only recently, a few studies used numerical simulations to
include the effect of wettability on displacement morphology. Primkulov et al. [21] used dynamic
pore network modeling to decipher the interplay between wettability, viscosities, and flow rates,
extending the classical phase diagram in Ref. [11]. The authors considered an idealized porous
medium made of cylindrical pillars, for which analytical expressions providing the advancement
of the meniscus via various filling mechanisms can be established [22]. Lattice Boltzmann (LB)
simulations were used to study the impact of wettability and viscosity on the displacement efficiency
for viscous fingering, on a similar idealized medium [23]. A more realistic 3D pore geometry,
extracted from from micro-CT images of sandstone, was used in LB simulations to study how
wettability and geometrical pore-scale heterogeneity affects the displacement, for two different
viscosity ratios, favorable and unfavorable (M � 1 and M << 1, respectively) [24]. These works
showed a transition from viscous fingering (VF) to compact displacement (CD) with increasing M.

Here, we extend the previous studies of Refs. [21,23,24] by systematically exploring the synergis-
tic relationships between wettability and fluid viscosities in a geologically realistic medium under
viscous-dominated flow. We use direct numerical simulations (DNS), which allow consideration
of the physics (solving the fundamental flow equations) for the intricate pore geometry derived
from a micro-CT image of a sand pack. The high spatial and temporal resolution provided by
DNS can capture subpore scale events such as interfacial readjustments [19,25], cooperative filling
[26], flow of films along the solid surfaces [27], and nonmonotonic behavior of the capillary
pressure [26,28,29]. Performing multiple DNS realizations for a three-dimensional heterogeneous
sand pack would require solving flow governing equations for a huge number of cells subsequently
increasing the computational costs. Therefore, we simulate flow in two-dimensional cross-sections.
The analysis presented in this study assists us to relate the large-scale features of invasion patterns
and displacement efficiency to the pore-scale mechanisms controlling it. Our simulations capture
the different displacement regimes (VF, CD, and VF/CD) showing that the threshold M for the
crossover between the regimes increases with the wettability. VF/CD refers to the intermediate
flow regime that has traits of both VF and CD which has not been captured in the earlier works of
Refs. [21,23,24]. We also establish the dependence of the dominant pore filling mechanisms on the
combination of M and wettability. We notice that the impact of M, θ on multiphase flows are scale
dependent. That is, at the sample (macroscopic) scale—only for M ≈ 1 (VF/CD), the displacement
morphology is dependent on θ whereas, at the pore scale—an increase in the differences of the
invasion protocols with the wettability become more evident as M decreases. In particular, we show
that for imbibition at a given contact angle, the effective wettability changes with viscosity: from
neutral-wetting (cooperative filling) to strongly wetting (film flow) with decreasing M. This further
indicates that in addition to contact angle, pore geometry [17], flow conditions [30,31], the effective
wettability is also a function of the viscosity ratio.

II. MATHEMATICAL MODEL

A. Governing equations

In DNS, the isothermal flow dynamics of immiscible and incompressible multiphase flow
systems are governed by the Navier-Stokes equations, solved for each fluid phase, where the
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fluid-fluid interfaces boundary conditions that ensure continuity in the velocity field are set. The
stress gradients can be computed via the Young-Laplace equation [32]. Though this approach
provides the interface dynamics, it is computationally demanding as it requires solving for a
complex moving boundary problem. The volume of fluid (VOF) method simplifies the computations
by considering the two fluid phases as a single mixture [33]. This is done by defining a color
function α ∈ [0, 1] which indicates the volume occupied by a specific fluid in a control volume:
when α is equal to 0 or 1 the volume is occupied by a single phase, whereas 1 > α > 0 indicates
the co-existence of two fluids separated by at least one fluid-fluid interface. VOF then solves for
conservation of both mass

∇ · U = 0 (1)

and momentum
∂ (ρU)

∂t
+ ∇ · (ρUU) = −∇p + ∇ · μ(∇U + ∇UT ) + Fb + Fc. (2)

In Eqs. (1) and (2), U is the velocity, t is time, p is pressure, Fb and Fc are the external body (for
example, gravity) and capillary forces, respectively. Superscript T denotes a transpose. Considering
a single mixture, its properties are assumed to be a linear combination of the two fluids comprising
it; for example, denoting the wetting phase by α = 1, the density ρ and the dynamic viscosity μ of
the mixture are

ρ = ρwα + ρn(1 − α),

μ = μwα + μn(1 − α).
(3)

The capillary forces are

Fc = σknIδI , (4)

where σ is the surface tension, k is the interface curvature, nI is the unit normal to the interface,
and δI is a Dirac δ function, which is used to restrict the capillary forces to act only at the interface.
Various VOF formulations can be used to define how the normal to the interface nI and the Dirac
delta function δI are discretized; see Pavuluri et al. [34]. In this work we use the conventional
continuum surface force (CSF) formulation [35], in which nIδI from Eq. (4) are approximated by
the gradient of the color function ∇α, providing

FCSF
c = σk∇α. (5)

The interface curvature k is computed as

k = −∇ · nI = −∇ · ∇α

|∇α| . (6)

Closure to the system of equations is provided by the following advection equation for the color
function:

∂α

∂t
+ ∇ · (Uα) = 0. (7)

B. Numerical implementation

We use the VOF method implemented in OpenFOAM [36] with the interFoam solver, where
the domain is discritized in space using the finite volume method, using an Eulerian mesh. The
field variables such as velocity U, pressure p and color function α are stored at the cell centers.
Time is discritized by first order Euler scheme. The gradient terms are discritized using Gauss
linear scheme, of second order accuracy. The advection term in the Navier-Stokes equation [second
term in the left-hand side of Eq. (2)] is solved using the limited linear difference scheme. As the
color function is required to be bounded, vanLeer scheme [37] is used for the advection of the
color function in Eq. (7). As many other numerical schemes, VOF suffers from numerical diffusion
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and smearing of interfaces, that arises from solving the discretized advection equation of the color
function. To reduce this numerical artefact, an additional term α(1 − α)Ur is added to Eq. (7), where
the so-called compression velocity is approximated as Ur = min[cαUcv, max(Ud )] [38]. cα is the
compression coefficient set to one based on the studies of Deshpande et al. [39], Hoang et al. [40],
Ferrari and Lunati [41], Ucv refers to the velocity in a specific control volume and max(Ud ) refers
to the maximum velocity in the entire porous medium. The term α(1 − α) restricts the compression
velocity to act only at the interfaces.

The pressure-velocity coupling in the Navier-Stokes equations are solved using the pressure
implicit with splitting of operators (PISO) algorithm [42]. To generate the discretized pore space
for the simulations, we first use a rectangular mesh with cell size of �x = �y = 13.5μm, and then
remeshed using the snappyHexMesh library of OpenFOAM. The time step size is chosen based

on the Brackbill number tBk =
√

ρavg�x3/(πσ ) where ρavg is the average density of fluids in the
domain and �x = 13.5μm is the cell size [35]. To reduce computational runtime, we set the time
step size �t ≈ 3tBk , which for our settings provides �t = 10μs. The parameters describing the
physical properties are provided in Sec. II C.

Random velocities larger in magnitude compared to the physical flows occur along the interfaces
while numerically solving equations in Sec. II A which are referred to as spurious currents. Decades
of research to reduce spurious currents have given rise to several VOF formulations [35,40,43–
45]. Promising is the piecewise linear interface calculation (PLIC) formulation that almost entirely
eliminates spurious currents [34,44]; however, the formulation is computationally expensive and
current open-source solvers can only handle flows with Cartesian meshes [44]. Other popular VOF
formulations are the filtered surface force (FSF)—captures the capillary fluxes and filters them,
the sharp surface force (SSF)—sharpen the interfacial region thereby restricting the region where
interfacial forces act [45]. FSF and SSF consider choosing several heuristic parameters which
can be case dependent [34]. In pursuit to reduce spurious currents random choice of heuristic
parameters could potentially alter the actual flows [26]. Therefore, for this work we chose to use the
conventional CSF formulation though spurious currents exist. The use of a fine mesh accompanied
by smaller time steps (according to tBk) in this study assists in reducing the impact of spurious
currents as these velocities appear in a random manner and are not continuously focused at specific
control volumes while solving Eq. (7). Hence, we believe that spurious currents do not play a
substantial role in altering the actual flow physics in this study.

C. Settings and parameter values

We simulate displacement in a geologically realistic medium, obtained from a 2D cross section of
micro-CT image of a sand pack [46] shown in Fig. 1. The sample has a porosity of φ = 27.8%
and dimensions are 6.75 and 14.05 mm in the X and Y direction. Figures SM1 and SM2 in the
Supplemental Material [47] show the segmented pores and pore size distribution, respectively, for
the porous medium shown in Fig. 1. In this work, we do not explicitly segregate the pore throats
and pore bodies and refer to the overall pore spaces as pores. From the pore size distribution, there
exists a total of 272 pores of which relatively large number of pores have pore diameter in the
range 100–300μm. While our 2D model geometry can represent subpore pore filling mechanisms
in the X -Y plane, such as film flow along solid grain surfaces (filling the entire gap thickness in
the Z direction), it cannot represent flows in the out-of-plane (Z) direction, where only part of the
gap is filled. Thus, our model excludes corner flows [48,49] and wetting layer formation along the
top and bottom plates. These mechanisms become important for the invasion of strongly wetting
fluid (“strong imbibition”) and strongly nonwetting fluids (“strong drainage,” at high Ca) at M � 1
[15,21]. The porous medium model is discretized into 145 000 cells using the snappyHexMesh
library of OpenFOAM. The zoom-in [Fig. 1(b)] shows the intricate nature of the geological media,
with highly nonuniform pore bodies and throats, and dead ends. The mesh contains both Cartesian
and non-Cartesian cells; non-Cartesian cells are used close to the boundaries with the solid grains,
to capture the orientation of the pore spaces.
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FIG. 1. (a) The simulated two-dimensional porous medium. The pore space and solid grains are shown in
gray and brown, respectively, (b) zoom-in showing the meshed pore space.

The boundary conditions are, fixed injection velocity of the invading fluid at the inlet face
at Ui = 70 mm/s, fixed pressure p = 1 atm at the outlet, and no-flow at the other two (lateral)
boundaries [Fig. 1(a)]. The surfaces of solid grains are subjected to no-slip boundary conditions.
The interface normal nI pointing towards the invading phase orients the interface according to
nI = nW cos(θ ) + tW sin(θ ), where nW is the normal to the solid grain surfaces, tW is the tangent
to the solid grain surfaces and θ is the equilibrium contact angle that the injected phase makes
with the solid surfaces [35]. While we specify the equilibrium contact angle for the simulations, a
combination of parameters such as the fluid velocity and the orientation of the pore spaces results
in an effective wettability.

We vary the contact angle in the range of θ ∈ [0◦, 180◦] with θ = 20◦ increments. Imbibition
and drainage refer to θ < 90◦ and θ > 90◦, respectively. At θ = 0◦ (“strong imbibition”), the
injected fluid perfectly wets the solid surfaces. At θ = 180◦ (“strong drainage”), the injected
fluid is perfectly nonwetting, such that it repels from the solid surfaces. The viscosity ratio,
M = μi/μd , was varied between 0.01 and 100, by setting the maximum viscosity of one fluid
to μmax = 0.1 kg/ms and tuning the viscosity of the other. Here μi and μd are the viscosities
of the invading and defending fluids, respectively. We set the density of both fluids to ρ = ρi =
ρd = 1000 kg/m3, and the surface tension to σ = 0.07 kg/s2. The capillary number, defined here
as Ca = Uiμmax/σ was fixed at 10−3. We chose this Ca value to focus on viscous-dominated flow
versus the capillary-dominated flow at Ca � 1 × 10−4 investigated elsewhere [11,50,51]. The total
number of simulations were 90: 10 values of θ and 9 values of M. Simulations were run using
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parallel computations with 16 Intel Xeon E5-2690 processors (clock speed 2.60 GHz). With that,
simulating 1 physical second of flow requires runtime of ∼3.5 h.

D. Image processing for quantitative analysis of patterns

Quantitative analysis of the observed patterns at breakthrough is done using two characteristics:
(i) the displacement efficiency De, which is the volume of the displaced defending fluid normalized
by the total pore volume; and (ii) the fractal dimensions D f , an estimation of the roughness of the
interface, which we compute using the box-counting method [52]. The fractal dimensions in 2D is
bounded at D f ∈ [1 − 2], where D f = 1 and D f = 2 represent the highest possible roughness and a
completely compact interfacial morphology, respectively. These computations are done on a binary
format (white for the injected fluid, black for everything else). Conversion of the invasion images
into binary format was done using Fiji software [53]. Supplemental Material [47] provides a brief
description regarding the procedure followed to determine D f in Fiji.

III. RESULTS

A. Displacement patterns

We begin with a qualitative analysis based on the visual appearance of the patterns, followed
by quantitative characterization using fractal dimension. Figure 2 shows the simulated patterns
at breakthrough for the 90 conditions (varying independently M and θ ) considered here. The
displacement patterns change from viscous fingering (VF) to compact displacement (CD), with
an intermediate regime (VF/CD) exhibiting a mix of features from both. VF, characterized by
long and narrow fingers, emerges at M � 0.01 irrespective of θ . The fluid fingers in imbibition
are slightly wider compared to those in drainage, also observed in Ref. [23]. This is due to the
increased tendency of the invading fluid to minimize contact with the solid surfaces in drainage. VF
was also observed in Ref. [21], however at M < 0.5. At M � 10, the invading fluid fills most of
the pore space leading to CD, again irrespective of θ . At intermediate values of M ≈ 1, a transition
between VF and CD occurs; the M value for the transition among the regimes depends on θ . From
Fig. 2 it can be seen that θ has relatively more influence on the fluid displacement patterns at M ≈ 1
compared to when M is substantially low or high.

Figure SM3 in the Supplemental Material [47] provides a complementary figure showcasing the
displacement patterns (for all 90 cases investigated) highlighting the solids, invading and defending
fluids for reference. Additionally, three videos of the invasion processes occurring at θ = 60◦ for
M = 0.01 (VF, Video 1), 1 (VF/CD, Video 2), and 100 (CD, Video 3) are also provided in the
Supplemental Material. For M = 1, θ = 60◦ (Video 2), the flow regime VF/CD shows traits of
CD—starting from the inlet boundary extending upto a certain length of the porous medium �CD,
VF—extending from the tip of �CD until the outlet boundary. Similar sort of flow behavior was
experimentally observed by [54] while investigating the transition from VF to CD by varying M, Ca
and keeping θ fixed. In our study, we notice �CD to reduce with increasing θ for a constant M.
Refer to Video 2 of the Supplemental Material [47] to notice the initial development of the fingers
along the sides of the porous medium that gradually develop over time. In parallel, the pore space
in-between the developed fingers gradually get invaded resembling CD.

Next, we analyze the patterns quantitatively, using (a) the displacement efficiency De and (b)
the fractal dimensions D f . Figure SM4 in the Supplemental Material [47] showcases results of
De, D f for the 90 cases investigated in this study. The more compact, less preferential invasion
is characterized by larger De and D f (Fig. 3). Consequently, as the invading fluid becomes more
wetting, i.e., as θ decreases, both De and D f increase, in most cases regardless of M. Similarly,
for a given θ , increasing M stabilizes the displacement thus increasing De and D f . The efficiency
increases from De < 30% at M = 0.01 and θ = 180◦ (drainage at nonfavorable viscosity ratio, VF)
to De > 80% at M = 100 and θ = 0◦ (imbibition at favorable viscosities, CD).

Combining the qualitative classification of the 90 simulated patterns (based on visual appearance,
cf. Fig. 2) with their D f values, allows us to establish the corresponding range of D f values for
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FIG. 2. Fluid displacement patterns for different contact angles θ and viscosity ratios M. The invading fluid
is shown in pink, defending fluid and the solid grains are shown in black. The continuous green lines indicate
transition between flow regimes: viscous fingering (VF) to intermediate (VF/CD) and intermediate to compact
(CD).
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FIG. 3. Phase diagram of displacement patterns classified based on (a) De, (b) Df , as a function of viscosity
ratio M (represented on log10 scale) and wettability θ . Results of De, Df from simulations (90 combinations of
M and θ ) are linearly interpolated. Dashed green lines indicate boundaries between regimes based on visual
observations and Df . The green dots indicate theoretical phase boundaries estimated through stability analysis.

each regime: D f < 1.6 for VF, D f = 1.6–1.83 for intermediate (VF/CD) regime, and D f > 1.83
for CD; our D f values agree well with published values for these regimes [55]. Plotting De, D f in
the form of a phase diagram, provides a quantitative estimation of the phase boundaries between
regimes (dashed green line in Fig. 3). These phase boundaries (dashed green line) agree well with
theoretical values obtained using the classical stability analysis by Saffman and Taylor [56] (plotted
as green dots in Fig. 3); for derivation details see the Appendix. The value of M at the boundary
between regimes increases with θ , in particular for the crossover between VF and VF/CD (Fig. 3).
Refer to the Supplemental Material [47] where we comment on the impact of domain size on the
observations reported in this section.

B. Pore filling mechanisms

The pore-scale mechanisms, controlling the manner by which pores are filled, eventually dictate
the larger, sample (macroscopic) scale patterns. Valuable information about these mechanisms
is obtained here by analyzing the effective pore size distribution (PSDe) of the invaded pores.
Figure SM8 in the Supplemental Material [47] shows the PSDe of the invaded pores for five
different M at θ = 0◦, 80◦, 180◦ determined using the distance transform watershed method [57].
Supplemental Material [47] briefly explains the protocol followed to obtain the PSDe shown in
Fig. 4. As the trends related to the frequency of pores occupied by the invading fluid at different M
are representative, for the sake of brevity we show results for three values of M = 0.01, 1, 100 in
Fig. 4.

FIG. 4. Effective pore size distribution of the invading fluid for (a) M = 0.01 (VF), (b) M = 1 (VF/CD),
and (c) M = 100 (CD) at θ = 0◦, 80◦, 180◦.
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We use the term effective pore size in this context as a single pore (obtained through pore
segmentation in Fig. SM2) could comprise frequencies (segments of the pore spaces occupied by
the invading fluid) of one or greater as shown in Fig. SM7 of the Supplemental Material [47]. This
is because, the frequencies of the invading fluid computed using the algorithm are dependent on the
invading fluids displacement morphology (displacement occurring through narrow/wider pores) and
also the presence of ganglions of the invading/defending fluid that form due to the ongoing flow
dynamics in the porous medium.

Figure 4 demonstrates the strong effect of wettability at small (unstable) viscosity ratio, M =
0.01 [VF; Fig. 4(a)]. In contrast, it shows the small effect of θ in stable, compact displacement, with
M = 100 [CD; Fig. 4(c)]. It is also interesting to examine the PSDe symmetry: the invaded PSDe is
relatively symmetric (and uniform) for M = 100, slightly skewed for M = 1, and strongly skewed
for M = 0.01 at strong imbibition (θ = 0◦) (Fig. 4). To explain this, we further analyze the pore
filling mechanisms during individual invasion events.

We investigate the pore filling mechanisms in a small region composed of a few pores both
qualitatively (visually) and quantitatively through the evolution of the local capillary pressure pc.
The local capillary pressure, pc = pn − pw where pn and pw are the volume-average nonwetting
and wetting phase pressure, respectively, is computed as pi =

∑
piVc∑
Vc

where i ∈ (w, n) and Vc is the
volumes of the computational cells within the analyzed region. We track the evolution of the local
pressure pc versus the local wetting phase saturation S∗

w. The latter is normalized by the maximum
Sw attained as the invading fluid reaches breakthrough on all four boundaries of the observation
window (red rectangle in Fig. 5). Through visual observations we notice that during imbibition
pores are filled primarily by two mechanisms: (i) film flow and (ii) cooperative filling, depending on
the viscosities (Fig. 5). We briefly describe the events below and an elaborate explanation about the
filling mechanisms can be found in the Supplemental Material [47]. At M = 0.01 (VF), the wetting
phase advances as thin films coating the solid surfaces [15] [Fig. 5(b)]. With this mechanism, the

FIG. 5. Pore filling mechanisms in strong imbibition (θ = 0◦). Focusing on small region containing several
pores [red rectangle in panel (a)], progression of invasion is shown as successive snapshots (injected fluid in
pink, defending fluids in black and solid in white), for unfavorable and favorable M, 0.01 and 100, respectively
[panels (b) and (c)]. At M = 0.01, the injected fluid propagates in the form of wetting layers that coat the
solid surfaces (green arrow), invades smaller pores (b). At M = 100, cooperative filling (green arrows) is the
dominant mechanism, leading to more uniform invasion of both small and large pore (c). Panels (d) and (e)
show the evolution of the local capillary pressure with saturation of wetting fluid (S∗

w) for the two mechanisms
(arrows indicate direction of change in S∗

w with time).
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invasion progresses predominantly through smaller pores, in accordance with the PSDe analysis
[Fig. 4(a)]. The evolution of pc shows a decrease in pc magnitude upon imbibition (i.e., increasing
S∗

w), see Fig. 5(d), which can be due to the formation of wetting layers that eventually results in
the formation of smaller interfacial curvatures pc ∝ k. At moderately high M of 1–100, cooperative
filling becomes the dominant mechanism [Fig. 5(c)], resulting in a more stable, compact front.
During cooperative filling, multiple meniscus merge together to form a single meniscus favoring
the invasion of large pore spaces. This mechanism fills the various pore sizes more uniformly than
at M = 0.01, as can be seen by comparing the PSDe of filled pores in Fig. 4(c) (moderately high
M) versus Fig. 4(a) (M = 0.01). The local capillary pressure pc drops [by ∼1000 Pa, Fig. 5(e)]
until S∗

w ≈ 0.3 as the invading fluid reaches the entrances of the pore body. As the invasion
continues, several interfaces merge which increases pc at S∗

w = 0.4. Following that, cooperative
filling continues and pc reaches a steady value as the average menisci curvature during these events
does not change significantly.

For strong drainage (θ = 180◦), the two dominant pore filling mechanisms visually observed are
(i) intermittent local jumps (“bursts”) and (ii) cooperative filling (Fig. 6). We briefly describe the
events below and refer to the Supplemental Material [47] for elaborate discussion about the events.
At M = 0.01, the pores are filled by a sequence of localized bursts, leading to VF [Fig. 6(b)].
As in this regime viscous forces dominate over capillary forces, the location of invasion depends
more on the global pressure gradients controlled by pore connectivity and less on the local pore
sizes. Therefore, we often noticed drainage through a combination of narrower and wider pore
spaces (narrower pore spaces are considered to be unfavourable during drainage) though there
exist interfaces connected to wider pore spaces. This is why the PSDe in this case is relatively
uniform [Fig. 4(a)]. The local pressure pc decreases as drainage progresses [decrease in S∗

w;

FIG. 6. Pore filling mechanisms in strong drainage (θ = 180◦). Focusing on small region containing several
pores [panel (a)], progression of invasion is shown as successive snapshots (injected fluid in pink, defending
fluids in black and solid in white), for unfavorable and favorable M, 0.01 and 100, respectively [panels
(b) and (c)]. At M = 0.01, the injected fluid propagates by a sequence of unstable bursts, which also involve
interfacial readjustments [blue arrow, panel (b)]. At M = 100, cooperative filling (green arrows) is the dominant
mechanism; however, unlike in imbibition, as the invading fluid is nonwetting here it leaves small pockets of
trapped defencing fluid [green arrows; panel (c)]. Both mechanisms lead to relatively uniform invasion in terms
of pore sizes. Panels (d) and (e) show the evolution of the local capillary pressure with saturation of wetting
fluid (S∗

w) for the two mechanism (arrows indicate direction of change in S∗
w with time).
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Fig. 6(d)]. This can be explained due to the formation of menisci that remain stagnant due to
interfacial readjustments and the evolution of the curvatures of the invading fluid front. As M
increases, cooperative filling becomes dominant, making the displacement pattern more compact
[Fig. 6(d)], and increasing the uniformity of invaded pore sizes [Fig. 4(c)]. While the mechanism
seems similar to that in imbibition at high M, in drainage as the invading fluid is less wetting it
does not completely displace the defending (wetting) fluid which remains trapped in small pockets
[Fig. 6(c)]. Unlike cooperative filling in imbibition where pc ≈ 0 as the interfaces reach entrance
to the pore body, in drainage the tendency of the invading fluid to repel from the solid surfaces and
invade mainly the larger pores results in maintaining a finite interfacial curvature at all times (versus
pc ≈ 0 in imibibition), cf. Fig. 6(e). Here, pc decreases as the invading fluid fills the pore bodies
(S∗

w = 0.8–0.5), with a very moderate rise after interfaces merge.
The presented analysis of pore filling mechanisms provides an interesting link between the

effective wettability conditions and the viscosities, M. Published simulations and experiments
observed cooperative filling at intermediate wet conditions [15,58,59]. Our simulations suggest that
M changes the effective wettability, and thus the dominant mechanism: from cooperative filling at
moderate and high M to film flow (during imbibition) and bursts (during drainage) at low M.

Though not part of this study, we elaborate in the Supplemental Material [47] how considering a
3D setup and scaled domain size impacts the quantitative results presented above.

IV. SUMMARY AND CONCLUSIONS

We leverage high-resolution direct numerical simulation (DNS) to uncover the synergistic impact
of wettability and viscous forces in viscous-dominated multiphase flow through a heterogeneous
geologically realistic porous media. We present a phase diagram classifying invasion patterns into
viscous fingering (VF), compact displacement (CD), and intermediate regime (CD/VF), with a
transition from compact upstream to VF downstream. At the macroscopic (sample) scale, the
wettability of porous media plays a pivotal role in controlling the crossover between regimes. Our
simulations indicate an increase in threshold M (at which the crossover between regimes occurs)
as wetting properties vary from imbibition to drainage. Wettability was also found to affect the
pore filling mechanisms. For low M (VF), film flow dominated during imbibition and bursts during
drainage. This strong effect of wettability over the pore-filling behavior diminishes as M increases:
cooperative filling was found to be dominating in CD irrespective of wettability. Using pore filling
mechanism as an indicator of effective wettability [58] we can deduce from Figs. 5 and 6 that the
change in mechanism from cooperative filling to film flow as the M decreases manifests a change
in effective wettability conditions from neutral-wet to strong-wet, respectively. Furthermore, the
analysis presented showcases that the impact of M, θ on multiphase flows is scale-dependent as
wettability is seen to play a role in the displacement patterns at M ≈ 1 at the sample scale whereas,
at the pore-scale the effect of wettability was observed to be significant at low M. These intriguing
effects of viscosity on effective wettability should be considered in modeling multiphase fluids of
similar viscosities, which is of interest to applications such as nonaqueous phase liquid (NAPLs)
contamination and enhanced hydrocarbon recovery.
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APPENDIX: DERIVATIONS OF PHASE BOUNDARY FROM LINEAR STABILITY ANALYSIS

Here we describe the evaluation of the theoretical phase boundaries (green dots in Fig. 3) using
the linear stability analysis by Saffman and Taylor [56]. Considering the relation between fluid flow
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potential ϕ and fluid velocity as U = ∇ϕ, the continuity equation Eq. (1) for each individual phase
i can be written as

∇ · ∇ϕi = ∇2ϕi = 0. (A1)

With this, force balance becomes [56][
Uε − αε

γ

]
μd

kd
−

[
Uε + αε

γ

]
μi

ki
= 2σcos(θ )

r
, (A2)

where ε represents the location of the perturbed displacement (finger) front relative to the base
state—the interface morphology before fingers develop. Here, α is the growth rate of the perturba-
tions and γ is the wave number indicating the number of periodic disturbances in the developed
finger (see further details in Saffman and Taylor [56], Rabbani et al. [60]). The stability analysis
proposed by Saffman and Taylor [56] considered b2/12 (b being the width between two parallel
plates in a Hele-Shaw cell) to be the permeability k = ki = kd . However for our case, due to
the presence of solid grains in the system and as the presence of the defending fluid impacts the
displacement of the injected phase, the effective permeability kα is considered to be a function of
the pore geometry and the fluid saturation. Therefore, the effective permeability of the injected fluid
can be approximated as ki = 2φλrε/n where r is the pore radius, n are the total number of pores in
the considered porous medium [60]. n = 272 are the total number of pores in the porous medium
obtained through pore size distribution study. λ in the expression for ki is determined empirically
to be λ = Den f [l f w f /lw][w f /w]. The product l f w f is the approximate area occupied by a single
finger, where l f and w f are the length and width of the finger, respectively. We assume w f = 1 mm
and l f = lpτ where lp is the length of the porous media over which the fingers develop and τ is
the effect of tortuosity [61]. For VF, as the fingers are of the size of the entire domain length, we
use lp = 14.05 mm. For VF/CD, as the fingers roughly exist over half the length of the porous
medium, we use lp = 7 mm. To account for the effect of tortuosity, we use l f = 1.5lp. For VF,
l f ≈ 20 mm and for VF/CD, l f ≈ 10 mm. We normalize l f w f by the area lw (medium dimensions).
n f = 2 refers to the number of fingers formed in general. Dew f /w is an empirical parameter used
to determine λ such that M in Eq. (A4) does not become negative. We obtain De ≈ 32.5% for
VF, De ≈ 65% for VF/CD are the average displacement efficiencies. Assuming a proportionality
between the effective permeabilities of the two fluids kd = Aki [62], we manipulate Eq. (A2) to
obtain

−α

γ

[
1

A
+ M

]
+ U

[
1

A
− M

]
= 4σcos(θ )φλ

μd n
. (A3)

The crossover between flow regimes is expected to occur when α = 0 [60]. Substituting α = 0 in
Eq. (A3) provides the following condition:

M = 1

A
− 4φλcos(θ )

Can
. (A4)

In the above equation, A is determined empirically. For VF, the invading fluid propagates through
the porous medium in the form of thin fingers. Therefore, most of the pores remain occupied by
the defending fluid. As the effective permeabilities ki are function of phase saturation Si [62], this
imply that the transition from VF to VF/CD occurs at A = kd (Sd )/ki(Si ) > 1. For this case, we
assume A = 1

Deφ
≈ 10. While considering VF/CD to CD, more than half of the porous medium is

occupied by the invading fluid essentially making A < 1. For this case, we assume A = Deφ ≈ 0.2.
Substituting all the above variables in Eq. (A4) gives the threshold viscosity ratio (the boundary
between regimes) at which transition between flow regimes occur indicated by green circles in
Fig. 3. We note that the threshold M increases with θ , in particular for the crossover between VF
and VF/CD (Fig. 3). Interestingly, for the idealized geometry in Primkulov et al. [21] the transition
from VF to CD occurred at M ≈ 0.5 irrespective of the wettability, without an intermediate VF/CD
regime which could potentially be due to the relatively simplistic nature of the models used in PNM.
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