
1.  Introduction
Energy dissipation is unavoidable in fluid-fluid displacements through disordered media even in the ideal limit 
of quasistatic driving, because displacements in heterogeneous media take place inherently out of equilibrium. 
Configurational changes in the passage from one metastable equilibrium state to another give rise to energy 
losses. As a result the macroscopic variables defining the system response exhibit hysteresis upon cyclic solici-
tations (Bertotti & Mayergoyz, 2006). This scenario is generic to other driven disordered systems such as elastic 
lines, disordered magnets, and granular packings (Wiese, 2022).

Memory is a striking property of quasistatically driven disordered systems (Keim et  al.,  2019; Pashine 
et al., 2019; Shohat & Lahini, 2023). In the context of fluid systems in disordered media, memory shows up not 
only in two-phase displacements in porous and fractured media (Albers, 2014; Cueto-Felgueroso & Juanes, 2016; 
Holtzman et  al., 2020) but also in capillary condensation of gases in nanoporous solids (Alvine et  al., 2006; 
Hiratsuka et al., 2016; Kierlik et al., 2001; Valiullin et al., 2006). This is important for the rise of sap in plants 
(Holbrook & Zwieniecki, 2008), infiltration into soils (Sahimi, 2011), efficiency of energy conversion in fuel 
cells (Tranter et al., 2018), and several other natural and engineered processes. Despite extensive work on the 
thermodynamics of multiphase flows in heterogeneous media (Bedeaux & Kjelstrup,  2022; Hu et  al.,  2018; 
Måløy et al., 2021; McClure et al., 2021; Primkulov et al., 2020), the link between memory and dissipation is still 
missing. The latter has recently become the focus of research in driven disordered systems in general (Shohat & 
Lahini, 2023).

Here we show that the return-point memory (RPM) of quasistatic hysteresis cycles can be used to establish a 
rigorous thermodynamic (macroscopic) framework to sort out and evaluate the energy dissipated in the passage 
between metastable equilibria. This framework provides a link between microscale quantities (microscopic 
quenched disorder, metastable equilibrium configurations) and the upscaled macroscopic trajectories and energy 
dissipation. The procedure is generic; here we apply it to a model of fluid-fluid displacements in an open fracture 
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(an imperfect Hele-Shaw cell) where the microscopic physical mechanisms of surface tension and capillarity lead 
to macroscopic pressure-saturation trajectories exhibiting the complex behavior of hysteresis and RPM.

2.  Energy Balance
2.1.  Generic Formulation for Fluid-Fluid Displacements

Energy conservation ensures that between consecutive metastable equilibria the mechanical work invested in 
driving the fluids is partially stored as internal energy of the multiphase system configuration, and partially dissi-
pated. Thus, for an infinitesimal change in wetting-phase saturation (corresponding to a volume change dVw), the 
energy balance

đ� = �� − đΨ� (1)

applies, where we have adopted the convention that đW > 0 is the external mechanical work performed on the 
system to drive the displacing fluid (đW < 0 if extracted; the sign depends on the external force and direction of 
advancement), dU > 0 is the increase in internal energy of the two-fluid configuration, and đΨ ≤ 0 is the amount 
of energy dissipated. The terms in Equation 1 refer to changes between two consecutive metastable equilibria, 
and đ denotes differentials of magnitudes that are not state functions (i.e., that depend on the path in the pressure 
vs wetting-phase saturation (PS) space). đΨ could be cast in terms of entropy production, but thermal fluctua-
tions here are insufficient to bring the system over the large energy barriers between neighboring equilibrium 
configurations.

We consider first a generic scenario in which a fluid is injected at one side (inlet) of a disordered domain and 
displaces a second fluid. A specific example is the system shown in Figure 1. For a given disorder realization, 
the total energy of the system (its Hamiltonian 𝐴𝐴  ) depends simultaneously on the interfacial configuration {ξ}, 
for example, the location and shape of the fluid-fluid interface (a microscopic feature), and the applied (macro-
scopic) pressure P on the fluid at the inlet; thus, every equilibrium state is defined by {ξ} and P. To obtain U 
and W, we split the Hamiltonian through the Legendre transformation 𝐴𝐴  = 𝑈𝑈 − 𝑃𝑃𝑃𝑃𝑤𝑤 , where Vw is the volume 
of the wetting phase in the domain (saturation times domain volume). In contrast with 𝐴𝐴  , the internal energy 
U of the multiphase configuration depends only on the set of variables {ξ} and not on the sequence of driving 
pressures P. The crucial point comes now: if the RPM property holds, the configuration {ξ} is exactly recovered 
in a cyclic excursion of P. Thus, U = U({ξ}) also returns to its original value in a cyclic excursion, making it a 
true state function. We note that the internal energy of the compartment models developed by Cueto-Felgueroso 
and Juanes (2016) and Helland et al. (2021) is also a state function, thanks to the RPM property. In contrast, the 
amount of work depends on the path in the PS space,

Figure 1.  Schematic of the model and its experimental realization. Disorder is introduced by randomly placed “mesa 
defects”—sharp variations in gap thickness, b(x, y) = b0 ± δb(x, y). Imbibition and drainage are driven by raising 
and lowering the wetting fluid reservoir, H. The cell is tilted to provide an effective gravity ge = g sinα. The interface 
configurations h(x) are recorded by a camera.
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đ� = � ���.� (2)

This expression relies on the incompressibility of the more wetting fluid, which guarantees that the amount of 
fluid displaced at the boundary of the domain coincides with the change of its volume in the medium. In this 
convention, the sign of đW depends on that of P (<0 in tension and >0 in compression) and dVw (>0 in imbibition 
and <0 in drainage).

Under quasistatic driving, a trajectory in the PS space is made of consecutive displacements of two types. In 
isons, the system remains trapped in a local energy minimum while P evolves exceedingly slowly and causes a 
smooth evolution of Vw. In rheons, an abrupt change in Vw occurs at constant P. Rheons take place when the limit 
of metastability of a local energy minimum is reached, the minimum disappears, and the system jumps to a new 
minimum, in what is called a Haines jump. In the idealized case of quasistatic driving, the timescales of these 
two kinds of displacements are infinitely separated, such that Haines jumps are effectively instantaneous in the 
time scale of P. This is the prototypical framework of spatially-extended athermal systems that undergo collective 
rearrangements (avalanches) under quasistatic driving (Jensen, 1998; Leschhorn et al., 1997; Pruessner, 2012). 
The dissipation between two consecutive equilibrium configurations (t  −  1 and t) is obtained by integrating 
Equation 1,

Ψ
𝑡𝑡−1→𝑡𝑡

=

[

𝑈𝑈
𝑡𝑡
− 𝑈𝑈

𝑡𝑡−1
]

− 𝑃𝑃
𝑡𝑡
[

𝑉𝑉
𝑡𝑡

𝑤𝑤 − 𝑉𝑉
𝑡𝑡−1

𝑤𝑤

]

.� (3)

Ψ t−1→t is nonzero in rheons.

Also, since U is a state function, ∮dU = 0 in a closed PS cycle. Integrating Equation 3 along the cycle demon-
strates that the total energy dissipated is the area encompassed within the cycle on the PS plane,

Ψcyc = ∮ �Ψ = −∮ đ� = −∮ � ���.� (4)

Furthermore, since by definition Ψcyc ≤ 0, there is only one sense allowed for contouring the cycle: for a given 
Vw the drainage path occurs at lower P than the imbibition path–in agreement with experimental observations 
(Albers, 2014).

2.2.  Model System: An Imperfect Hele-Shaw Cell

To gain further quantitative understanding of the microscopic mechanisms for dissipation, and enable rigorous 
comparison with experiments, we derive explicit expressions of W, U, and Ψ for quasistatic two-fluid displace-
ments in an imperfect Hele-Shaw cell, in the framework of the model introduced by Holtzman et al. (2020).

The model considers the 2D projection of a heterogeneous Hele-Shaw cell, subjected to an effective gravity ge 
in order to prevent viscous fingering during drainage (Figure 1). Gravity also allows investigating a wider range 
of pressure-saturation values than for a horizontal cell, as in the absence of heterogeneity there is no equilibrium 
position without gravity (Ayaz et al., 2020; Holtzman et al., 2020).

Disorder is provided by fluctuations in capillary pressure at the fluid-fluid interface, corresponding to localized 
modulations in the gap thickness, b(x, y) (“defects” forming constrictions and expansions). Fluid displacements 
are driven by an external pressure P = ρgH applied at the inlet, with ρ being the wetting fluid density, g the 
gravitational acceleration, and H the external head. The density of the second fluid is considered negligible (air).

Multiphase configurations {ξ} in the projected 2D model correspond to metastable equilibrium interface positions, 
{h(x)}. For a given disorder realization, they can be resolved from the pressure balance (Holtzman et al., 2020)

𝛾𝛾
𝑑𝑑
2

ℎ

𝑑𝑑𝑑𝑑2

− 𝜌𝜌𝜌𝜌𝑒𝑒ℎ + 𝑃𝑃 + 𝑝𝑝𝑐𝑐(𝑥𝑥𝑥 𝑥) = 0.� (5)

The first term is the linear approximation (considering small interface deformations, |�ℎ∕��|  < 1) of the in-plane 
contribution to the Young-Laplace pressure jump across the interface, with γ the interfacial tension; the second 
is the hydrostatic pressure of the wetting fluid column at position x; the third is the external forcing; and the 
fourth pc(x, y) = 2γ cos θ/b(x, y) is the out-of-plane contribution to the Young-Laplace pressure jump at the front 
position h(x), with θ the apparent contact angle. Each disorder realization is defined by the microstructure b(x, y).  
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Considering mild local interface deformations we rule out the possibility of overhangs or complex processes such 
as snapoff.

The condition of mechanical equilibrium in Equation 5 can also be expressed as 𝐴𝐴 𝐴𝐴𝑒𝑒[ℎ(𝑥𝑥)] = −𝛿𝛿∕𝛿𝛿𝛿(𝑥𝑥) = 0 , 
with the Hamiltonian given by

 =

𝐿𝐿

∫

0

𝑑𝑑𝑑𝑑

⎡

⎢

⎢

⎣

𝛾𝛾

2

(

𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

)2

+

ℎ

∫

0

𝑑𝑑𝑑𝑑(𝜌𝜌𝜌𝜌𝑒𝑒𝑦𝑦 − 𝑃𝑃 − 𝑝𝑝𝑐𝑐)

⎤

⎥

⎥

⎦

.� (6)

This is equivalent to the Hamiltonian of a continuous Random Field Ising Model (RFIM) where pc(x, y) plays the 
role of the random field (Ganesan & Brenner, 1998; Grinstein & Ma, 1983). The terms in 𝐴𝐴  as well as W, U, and 
Ψ in the forthcoming analysis are in units of energy per length, that is, in our 2D model they are normalized by 
the average gap thickness b0. Similarly, in 2D we use the area covered by the wetting fluid, 𝐴𝐴 𝐴𝐴𝑤𝑤 = ∫

𝐿𝐿

0
𝑑𝑑𝑑𝑑 ∫

ℎ(𝑥𝑥)

0
𝑑𝑑𝑑𝑑 , 

instead of its volume Vw. Its relation to the wetting phase saturation 𝐴𝐴 𝐴𝐴
∗

𝑤𝑤 is given in Supporting Information S1. 
We note that for very large thickness variations, the integrals computing the energies should be corrected to take 
into account these variations.

Introducing Equation 6 into 𝐴𝐴  = 𝑈𝑈 − 𝑃𝑃𝑃𝑃𝑤𝑤 provides the internal energy (per unit thickness) of a given equilib-
rium configuration h(x),

𝑈𝑈 =

𝐿𝐿

∫

0

𝑑𝑑𝑑𝑑

⎡

⎢

⎢

⎣

𝛾𝛾

2

(

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)2

+

ℎ

∫

0

𝑑𝑑𝑑𝑑(𝜌𝜌𝜌𝜌𝑒𝑒𝑦𝑦 − 𝑝𝑝𝑐𝑐)

⎤

⎥

⎥

⎦

.� (7)

L is the width of the cell in the x direction. This expression of U accounts for the capillary energy of the in-plane 
and out-of-plane front deformations (first and third terms), and the gravitational potential energy of the wetting 
fluid. The work in Equation 2 for every elementary step dSw is đ� = � ∫ �

0 �� �ℎ(�) .

The internal energy U is the energy of static equilibrium configurations, when the meniscus is at rest and the 
energy depends only on capillary and hydrostatic forces. According to Equation 3, the change in internal energy 
between two consecutive equilibrium configurations does not equate the work provided by the external driving; 
the difference is the energy dissipated, Ψ t−1→t, which in this framework is a loss of interfacial energy. This formu-
lation does not account for viscous losses (viscosity of the fluids is not accounted for), in the expectation that they 
will be comparatively small in quasistatic displacements, as shown later.

3.  Dissipation in Avalanches and the Role of System Properties
Dissipation depends on the interactions between the interface and the disordered medium. Surface tension 
introduces correlations along the interface, and the medium spatial heterogeneities turn these correlations into 
complex collective behavior (Holtzman et  al.,  2020). Spatial interactions among multiple defects of variable 
properties lead to a wide range of avalanche sizes (jumps in saturation) and dissipated energies.

To exemplify these properties of energy dissipation we compare the probability density function (PDF) of the 
energy dissipated within individual jumps (between adjacent equilibrium configurations t − 1 and t) normal-
ized by the work input. We generate the disordered medium by randomly placing defects (Figure 1) of various 
strengths pc, drawn from different distributions (here, Gaussian with standard deviation 𝐴𝐴 𝐴𝐴𝑝𝑝𝑐𝑐

 and dichotomic; see 
Supporting Information S1). To establish the role of the disorder strength, we compare media of variable width 
of the defect strength distribution, 𝐴𝐴 𝐴𝐴𝑝𝑝𝑐𝑐

 (keeping the spatial distribution identical; see Supporting Information S1). 
Increasing 𝐴𝐴 𝐴𝐴𝑝𝑝𝑐𝑐

 , which sets the magnitude of strongest defects, increases the magnitude of the dissipation events, 
stretching the PDF toward larger values (see Figure 2a). Figure 2 also demonstrates that the energy dissipated in 
a single jump could greatly exceed the work invested in driving the system. This is because the energy released 
in an avalanche could have been stored as internal energy during many previous elementary steps. Most of the 
dissipation during a complete imbibition-drainage cycle therefore occurs in a handful of large events (Movies S1 
and S2). This behavior is akin to the sudden release of energy in earthquakes (Sornette & Sornette, 1989) or 
granular avalanches (Denisov et al., 2016).

Another nonintuitive result is that the avalanche size (change in saturation) is not necessarily proportional 
to the amount of energy dissipated (Figures  2b and  2c). This non-proportionality is a general property of 
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quasistatically-driven disordered systems (Ortín & Goicoechea, 1998). Increasing the distribution width 𝐴𝐴 𝐴𝐴𝑝𝑝𝑐𝑐
∕𝑝𝑝

0

𝑐𝑐 
by a factor of 20 (from 0.026 to 0.510) increases the slope of |

|

Ψ�−1→�
|

|

 versus ||
|

�∗,�
� − �∗,�−1

�
|

|

|

 by ∼50. Here, 
𝐴𝐴 𝐴𝐴𝑐𝑐 = 𝑝𝑝

0
𝑐𝑐 + 𝛿𝛿𝛿𝛿𝑐𝑐 , where 𝐴𝐴 𝐴𝐴

0

𝑐𝑐 = 2𝛾𝛾cos 𝜃𝜃∕𝑏𝑏0 and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑐𝑐 = 𝑝𝑝
0

𝑐𝑐 (𝛿𝛿𝛿𝛿∕𝑏𝑏0)∕(1 − 𝛿𝛿𝛿𝛿∕𝑏𝑏0) . The slope was found by fitting a straight 
line (in dashed gray) to the conditional average of the data (solid black line in insets of Figures 2b and 2c). The 
larger slope reflects the increased dissipation per avalanche size, due to the depinning from the stronger defects. 
We note the larger spread as well as deviation from a linear fit of smaller values, emphasized in log-log plots 
(Figures 2b and 2c insets).

Next, we examine how the system properties affect the total dissipation along a closed drainage-imbibition 
cycle, Ψcyc. We find that Ψcyc scales with the disorder strength 𝐴𝐴 𝐴𝐴𝑝𝑝𝑐𝑐

 ; for the Gaussian distributions studied here, 
𝐴𝐴 Ψcyc ∼

(

𝜎𝜎𝑝𝑝𝑐𝑐

)𝑛𝑛 with n ≈ 1.4 (Figure 3a). This nonlinear relationship is a result of interactions among the hetero-
geneities due to the lateral correlation caused by interfacial tension (Holtzman et al., 2020). Dissipation is also 
controlled by the effective gravity ge which sets the Bond number, namely the ratio of gravitational to capillary 
forces. Increasing ge reduces the capillary rise (Jurin's height), restricting the size of the avalanches 𝐴𝐴 |𝑆𝑆

∗,𝑡𝑡

𝑤𝑤 − 𝑆𝑆
∗,𝑡𝑡−1

𝑤𝑤 | 
and hence the dissipated energy, cf. Figure 3b and Movies S3 and S4.

4.  Experiments Exposing Viscous Dissipation and the Limitation of the Quasi-Static 
Concept
The simulations above provide a quantitative analysis of the energy losses associated with the dissipation of inter-
facial energy (stored in the deformed interface configurations (Morrow, 1970)) in ideally quasistatic conditions. 

Figure 2.  (a) The probability density function (PDF) of the energy dissipated in individual jumps, Ψ t−1→t, normalized by the work, W t−1→t, for systems with 
different widths of the defect strength distribution, 𝐴𝐴 𝐴𝐴𝑝𝑝𝑐𝑐

 . Panels (b) and (c) show the energy dissipation (in J/m) against the corresponding avalanche sizes (in terms of 
dimensionless saturation, 𝐴𝐴 |𝑆𝑆

∗,𝑡𝑡

𝑤𝑤 − 𝑆𝑆
∗,𝑡𝑡−1

𝑤𝑤 | ), for narrow and wide distributions, 𝐴𝐴 𝐴𝐴𝑝𝑝𝑐𝑐
∕𝑝𝑝

0

𝑐𝑐 of 0.026 and 0.510, respectively. The insets emphasize the larger spread of smaller 
values as well as their deviation from a linear relationship (dashed line); the solid black line is the conditional average.

Figure 3.  Impact of system properties on the energy dissipated in closed PS cycles, Ψcyc: (a) Nonlinear scaling with the 
defect strength distribution 𝐴𝐴 𝐴𝐴𝑝𝑝𝑐𝑐

∕𝑝𝑝
0

𝑐𝑐 (dashed line); (b) Dissipation decreases with effective gravity ge. To compensate for 
differences in the required driving force, Ψcyc is normalized by the width in pressure of the hysteresis cycle, ΔP. Each point is 
an average over five disorder realizations (15 for ge = 0.2 m/s 2); error bars show the standard deviation.
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The simulated PS trajectories show good agreement with an experiment in a 
disordered Hele-Shaw cell with similar material and geometrical properties, 
as shown in Figure 4. The experimental setup, procedure and analysis are 
detailed in Supporting Information S1. For the specific set of parameters in 
Figure 4 (dichotomic gap spacing b0 = 0.46(1) mm and δb = 0.06(1) mm, 
disorder units of size 0.40(1) × 0.40(1) mm 2 covering 35% of the total area, 
and ge = 0.86(1) m/s 2, see Supporting Information S1), the dissipated energy 
computed from the area enclosed within the PS cycle in the experiments is 
larger only by ∼18% than in the simulations. This implies that capillary losses 
account for most of the energy dissipated in quasistatic fluid displacements. 
Moreover, the primary imbibition curve and the early stages of subsequent 
drainage agree well, but the experimental data depart from the simulated 
drainage curve as the external pressure is lowered further. This also produces 
a small shift in the internal cycle. The lower external pressure required to 
drain a given wet area in the experiments, corresponding to a larger external 
work, is responsible for the larger dissipation measured experimentally. We 
note that since our external forcing P (or H) is in the wetting fluid, it is of 
opposite sign to the capillary pressure; thus, in our representation drainage 
occurs at lower P than imbibition, in contrast with the conventional capillary 
pressure curve.

Another interesting feature in Figure  4 is the behavior of the inner cycle. 
While the numerical simulations display perfect RPM (as proved in Holtzman 

et al. (2020)), the experimental inner cycle does not rejoin the primary drainage curve at the same point exactly. 
This is due to the larger steps of driving pressure (P or H) in the experiments (Figure S1 in Supporting Infor-
mation S1), deviating from the infinitesimal perturbations required in the quasistatic case, that could be realized 
numerically but not experimentally; this was confirmed by simulating coarser H increments.

5.  Discussion
Our results indicate that the interfacial energy dissipated in Haines jumps accounts for most of the energy dissi-
pated in slowly driven systems (e.g., as acoustic emissions (Moebius & Or, 2012)), in agreement with observations 
from experiments driven at constant rate (Berg et al., 2013; Hu et al., 2018; Måløy et al., 2021). For the experiment 
presented in this paper, our quasistatic approach accounts for ∼80% of the energy dissipated during fluid displace-
ments (Figure 4). We argue that the remaining ∼20% discrepancy originates from viscous dissipation caused by 
a finite velocity of the wetting fluid in experiments versus the zero velocity considered in the model. A nonzero 
velocity is an inherent feature of Haines jumps (rheons), regardless of how slow the interface is driven (Berg 
et al., 2013). Moreover, the corresponding viscous pressure drop depends on the sign of the front velocity, and thus 
plays opposite roles in drainage and imbibition. A small asymmetry between imbibition and drainage was already 
observed in experiments of slow displacements through a localized constriction (single defect) (Planet et al., 2020); 
this asymmetry accumulates and intensifies in a disordered medium composed of multiple defects where defor-
mations take place cooperatively as Haines jumps. The role of viscous dissipation in imbibition-drainage cycles at 
finite flow rate, and its impact on the property of RPM is the subject of ongoing research.

Another source of disparity between our model and quasistatically-driven experiments is the long relaxation times-
cale required for the interface to attain mechanical equilibrium at a new Jurin's height after each small pressure 
step (Clotet et al., 2012; Schlüter et al., 2017). In fact, the interface may continue to experience fluctuations even 
after reaching the Jurin's height (Lago & Araujo, 2001; Shikhmurzaev & Sprittles, 2012). Hence, the seemingly 
reversible, non-dissipative displacements (isons) also contribute to viscous dissipation, though to a lesser extent 
than Haines jumps (rheons). Additional mechanisms that can cause hysteresis and dissipation such as dynamic 
wetting, snap-off, and fluid trapping (Bonn et al., 2009; Giacomello et al., 2016; Moebius et al., 2012; Moebius 
& Or, 2012) are not considered in our model, which is characterized by a single continuous, univalued interface.

In conclusion, we have derived a thermodynamic framework that allows the quantification of energy dissipated 
via Haines jumps in capillary pressure-saturation trajectories at continuum scale from the microscopic mecha-
nisms of surface tension and capillarity. The analysis presented here applies in fact to all modeling approaches 

Figure 4.  Simulated and experimental PS cycles in terms of external head 
H and wet area Sw in the imperfect Hele-Shaw cell shown in Figure 1, using 
the same defect statistics. The numerical curve is the result of averaging 52 
independent realizations (in gray). The uncertainty of the experimental data 
(single experiment) is smaller than the symbol size.
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displaying RPM for which the internal energy of multiphase configurations is a true state function. Relevant 
examples include the compartmental models introduced in Refs (Cueto-Felgueroso & Juanes,  2016; Helland 
et al., 2021). Return-point memory appears therefore as a very useful property to extend classical equilibrium 
thermodynamic principles to nonequilibrium systems driven through metastable equilibria. The present approach 
provides in this way a means of upscaling fluid-fluid displacements in disordered media, and a generic method 
of potential interest in quasistatically-driven disordered systems.

Data Availability Statement
All data used to generate the figures and conclusions in the paper can be downloaded from: https://dx.doi.
org/10.6084/m9.figshare.22623262.

References
Albers, B. (2014). Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media: A review. Acta Mechanica, 

225(8), 2163–2189. https://doi.org/10.1007/s00707-014-1122-4
Alvine, K. J., Shpyrko, O. G., Pershan, P. S., Shin, K., & Russell, T. P. (2006). Capillary filling of anodized alumina nanopore arrays. Physical 

Review Letters, 97(17), 175503. https://doi.org/10.1103/PhysRevLett.97.175503
Ayaz, M., Toussaint, R., Schäfer, G., & Måløy, K. J. (2020). Gravitational and finite-size effects on pressure saturation curves during drainage. 

Water Resources Research, 56(10), e2019WR026279. https://doi.org/10.1029/2019wr026279
Bedeaux, D., & Kjelstrup, S. (2022). Fluctuation-dissipation theorems for multiphase flow in porous media. Entropy, 24(1), 46. https://doi.

org/10.3390/e24010046
Berg, S., Ott, H., Klapp, S. A., Schwing, A., Neiteler, R., Brussee, N., et al. (2013). Real-time 3D imaging of Haines jumps in porous media 

flow. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3755–3759. https://doi.org/10.1073/
pnas.1221373110

Bertotti, G. & Mayergoyz, I. D. (Eds.) (2006). The science of hysteresis, Mathematical modeling and applications (Vol. 1). Academic Press.
Bonn, D., Eggers, J., Indekeu, J., Meunier, J., & Rolley, E. (2009). Wetting and spreading. Reviews of Modern Physics, 81(2), 739–805. https://

doi.org/10.1103/RevModPhys.81.739
Clotet, X., Planet, R., & Ortín, J. (2012). Capillary rise in Hele-Shaw models of disordered media. Journal of Colloid and Interface Science, 

377(1), 387–395. https://doi.org/10.1016/j.jcis.2011.12.080
Cueto-Felgueroso, L., & Juanes, R. (2016). A discrete-domain description of multiphase flow in porous media: Rugged energy landscapes and 

the origin of hysteresis. Geophysical Research Letters, 43(4), 1615–1622. https://doi.org/10.1002/2015GL067015
Denisov, D., Lörincz, K., Uhl, J., Dahmen, K., & Schall, P. (2016). Universality of slip avalanches in flowing granular matter. Nature Communi-

cations, 7(1), 1–6. https://doi.org/10.1038/ncomms10641
Ganesan, V., & Brenner, H. (1998). Dynamics of two-phase fluid interfaces in random porous media. Physical Review Letters, 81(3), 578–581. 

https://doi.org/10.1103/PhysRevLett.81.578
Giacomello, A., Schimmele, L., & Dietrich, S. (2016). Wetting hysteresis induced by nanodefects. Proceedings of the National Academy of 

Sciences of the United States of America, 113(3), E262–E271. https://doi.org/10.1073/pnas.1513942113
Grinstein, G., & Ma, S.-K. (1983). Surface tension, roughening, and lower critical dimension in the random-field ising model. Physical Review 

B: Condensed Matter, 28(5), 2588–2601. https://doi.org/10.1103/PhysRevB.28.2588
Helland, J. O., Jettestuen, E., & Friis, H. A. (2021). A discrete-domain approach to three-phase hysteresis in porous media. Water Resources 

Research, 57(6), e2021WR029560. https://doi.org/10.1029/2021WR029560
Hiratsuka, T., Tanaka, H., & Miyahara, M. T. (2016). Critical energy barrier for capillary condensation in mesopores: Hysteresis and reversibility. 

Journal of Chemical Physics, 144(16), 164705. https://doi.org/10.1063/1.4947243
Holbrook, N. M., & Zwieniecki, M. A. (2008). Transporting water to the tops of trees. Physics Today, 61(1), 76–77. https://doi.

org/10.1063/1.2835167
Holtzman, R., Dentz, M., Planet, R., & Ortín, J. (2020). The origin of hysteresis and memory of two-phase flow in disordered media. Communi-

cations Physics, 3(1), 222. https://doi.org/10.1038/s42005-020-00492-1
Hu, R., Wu, D. S., Yang, Z., & Chen, Y. F. (2018). Energy conversion reveals regime transition of imbibition in a rough fracture. Geophysical 

Research Letters, 45(17), 8993–9002. https://doi.org/10.1029/2018GL079302
Jensen, H. J. (1998). Self-organized criticality: Emergent complex behavior in physical and biological systems. Cambridge University Press.
Keim, N. C., Paulsen, J. D., Zeravcic, Z., Sastry, S., & Nagel, S. R. (2019). Memory formation in matter. Reviews of Modern Physics, 91(3), 

035002. https://doi.org/10.1103/RevModPhys.91.035002
Kierlik, E., Monson, P. A., Rosinberg, M. L., Sarkisov, L., & Tarjus, G. (2001). Capillary condensation in disordered porous materials: Hysteresis 

versus equilibrium behavior. Physical Review Letters, 87(5), 055701. https://doi.org/10.1103/PhysRevLett.87.055701
Lago, M., & Araujo, M. (2001). Capillary rise in porous media. Journal of Colloid and Interface Science, 234(1), 35–43. https://doi.org/10.1006/

jcis.2000.7241
Leschhorn, H., Nattermann, T., Stepanow, S., & Tang, L. H. (1997). Driven interface depinning in a disordered medium. Annalen der Physik, 6(1), 

1–34. https://doi.org/10.1002/andp.19975090102
Måløy, K. J., Moura, M., Hansen, A., Flekkøy, E. G., & Toussaint, R. (2021). Burst dynamics, up-scaling and dissipation of slow drainage in 

porous media. Frontiers in Physics, 9. https://doi.org/10.3389/fphy.2021.796019
McClure, J. E., Berg, S., & Armstrong, R. T. (2021). Thermodynamics of fluctuations based on time-and-space averages. Physical Review E 

- Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 104(3), 035106. https://doi.org/10.1103/PhysRevE.104.035106
Moebius, F., Canone, D., & Or, D. (2012). Characteristics of acoustic emissions induced by fluid front displacement in porous media. Water 

Resources Research, 48(11), 1–12. https://doi.org/10.1029/2012WR012525
Moebius, F., & Or, D. (2012). Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries. Journal of 

Colloid and Interface Science, 377(1), 406–415. https://doi.org/10.1016/j.jcis.2012.03.070

Acknowledgments
We acknowledge J. Canadell for his help 
with the experiments. RH acknowl-
edges support from the Engineering and 
Physical Sciences Research Council (EP/
V050613/1); MD and JO received support 
from the Spanish Ministry of Science and 
Innovation through the project HydroPore 
(PID2019-106887GB-C31 and C32); RP 
and JO were also supported by AGAUR 
(Generalitat de Catalunya) through Grant 
2021-SGR-00450.

 19448007, 2023, 16, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
104073 by T

est, W
iley O

nline L
ibrary on [06/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://dx.doi.org/10.6084/m9.figshare.22623262
https://dx.doi.org/10.6084/m9.figshare.22623262
https://doi.org/10.1007/s00707-014-1122-4
https://doi.org/10.1103/PhysRevLett.97.175503
https://doi.org/10.1029/2019wr026279
https://doi.org/10.3390/e24010046
https://doi.org/10.3390/e24010046
https://doi.org/10.1073/pnas.1221373110
https://doi.org/10.1073/pnas.1221373110
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1016/j.jcis.2011.12.080
https://doi.org/10.1002/2015GL067015
https://doi.org/10.1038/ncomms10641
https://doi.org/10.1103/PhysRevLett.81.578
https://doi.org/10.1073/pnas.1513942113
https://doi.org/10.1103/PhysRevB.28.2588
https://doi.org/10.1029/2021WR029560
https://doi.org/10.1063/1.4947243
https://doi.org/10.1063/1.2835167
https://doi.org/10.1063/1.2835167
https://doi.org/10.1038/s42005-020-00492-1
https://doi.org/10.1029/2018GL079302
https://doi.org/10.1103/RevModPhys.91.035002
https://doi.org/10.1103/PhysRevLett.87.055701
https://doi.org/10.1006/jcis.2000.7241
https://doi.org/10.1006/jcis.2000.7241
https://doi.org/10.1002/andp.19975090102
https://doi.org/10.3389/fphy.2021.796019
https://doi.org/10.1103/PhysRevE.104.035106
https://doi.org/10.1029/2012WR012525
https://doi.org/10.1016/j.jcis.2012.03.070


Geophysical Research Letters

HOLTZMAN ET AL.

10.1029/2023GL104073

8 of 8

Morrow, N. (1970). Physics and thermodynamics of capillary action in porous media. Industrial & Engineering Chemistry Research, 62(6), 
32–56. https://doi.org/10.1021/ie50726a006

Ortín, J., & Goicoechea, J. (1998). Dissipation in quasistatically driven disordered systems. Physical Review B: Condensed Matter, 58(9), 5628–
5631. https://doi.org/10.1103/PhysRevB.58.5628

Pashine, N., Hexner, D., Liu, A. J., & Nagel, S. R. (2019). Directed aging, memory, and nature’s greed. Science Advances, 5(12), 1–8. https://doi.
org/10.1126/sciadv.aax4215

Planet, R., Díaz-Piola, L., & Ortín, J. (2020). Capillary jumps of fluid-fluid fronts across an elementary constriction in a model open fracture. 
Physical Review Fluids, 5(4), 044002. https://doi.org/10.1103/PhysRevFluids.5.044002

Primkulov, B. K., Chui, J. Y. Y., Pahlavan, A. A., MacMinn, C. W., & Juanes, R. (2020). Characterizing dissipation in fluid-fluid displacement 
using constant-rate spontaneous imbibition. Physical Review Letters, 125(17), 174503. https://doi.org/10.1103/PhysRevLett.125.174503

Pruessner, G. (2012). Self-organised criticality: Theory, models and characterisation. Cambridge University Press.
Sahimi, M. (2011). Flow and transport in porous media and fractured rock. Wiley VCH Verlag GmbH.
Schlüter, S., Berg, S., Li, T., Vogel, H.-J., & Wildenschild, D. (2017). Time scales of relaxation dynamics during transient conditions in two-phase 

flow. Water Resources Research, 53(6), 4709–4724. https://doi.org/10.1002/2016WR019815
Shikhmurzaev, Y. D., & Sprittles, J. E. (2012). Anomalous dynamics of capillary rise in porous media. Physical Review E - Statistical Physics, 

Plasmas, Fluids, and Related Interdisciplinary Topics, 86(1), 016306. https://doi.org/10.1103/PhysRevE.86.016306
Shohat, D., & Lahini, Y. (2023). Dissipation indicates memory formation in driven disordered systems. Physical Review Letters, 130(4), 048202. 

https://doi.org/10.1103/PhysRevLett.130.048202
Sornette, A., & Sornette, D. (1989). Self-organized criticality and earthquakes. EPL, 9(3), 197–202. https://doi.org/10.1209/0295-5075/9/3/002
Tranter, T., Gostick, J., Burns, A., & Gale, W. (2018). Capillary hysteresis in neutrally wettable fibrous media: A pore network study of a fuel cell 

electrode. Transport in Porous Media, 121(3), 597–620. https://doi.org/10.1007/s11242-017-0973-2
Valiullin, R., Naumov, S., Galvosas, P., Al, E., Woo, H. J., Porcheron, F., & Monson, P. A. (2006). Exploration of molecular dynamics during 

transient sorption of fluid in mesoporous materials. Nature, 443(7114), 965–968. https://doi.org/10.1038/nature05183
Wiese, K. J. (2022). Theory and experiments for disordered elastic manifolds, depinning, avalanches, and sandpiles. Reports on Progress in 

Physics, 85(8), 086502. https://doi.org/10.1088/1361-6633/ac4648

 19448007, 2023, 16, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
104073 by T

est, W
iley O

nline L
ibrary on [06/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1021/ie50726a006
https://doi.org/10.1103/PhysRevB.58.5628
https://doi.org/10.1126/sciadv.aax4215
https://doi.org/10.1126/sciadv.aax4215
https://doi.org/10.1103/PhysRevFluids.5.044002
https://doi.org/10.1103/PhysRevLett.125.174503
https://doi.org/10.1002/2016WR019815
https://doi.org/10.1103/PhysRevE.86.016306
https://doi.org/10.1103/PhysRevLett.130.048202
https://doi.org/10.1209/0295-5075/9/3/002
https://doi.org/10.1007/s11242-017-0973-2
https://doi.org/10.1038/nature05183
https://doi.org/10.1088/1361-6633/ac4648

	The Relation Between Dissipation and Memory in Two-Fluid Displacements in Disordered Media
	Abstract
	Plain Language Summary
	1. Introduction
	2. Energy Balance
	2.1. Generic Formulation for Fluid-Fluid Displacements
	2.2. Model System: An Imperfect Hele-Shaw Cell

	3. Dissipation in Avalanches and the Role of System Properties
	4. Experiments Exposing Viscous Dissipation and the Limitation of the Quasi-Static Concept
	5. Discussion
	Data Availability Statement
	References


